
Building a Hardware Random Bit Generator for EVPmaker - www.StefanBion.de

http://www.stefanbion.de/evpmaker/random-bit-generator/index_e.htm[28.05.2009 12:16:12]

Building a Hardware Random Bit Generator for
EVPmaker

This article shows how you can build a simple hardware random bit generator for EVPmaker.

Although EVPmaker functions well with software-generated pseudo random numbers, it might be
advantageous to use "true" random numbers. Perhaps it's possible for the "EVP entities" (which are
perhaps our own subconsciousnesses) to influence these true random numbers more easily than the
deterministic pseudo random numbers (which in my opinion are actually unchangeable). EVPmaker
already offered an option to use the soundcard input as a random source. From version 2.4 on it's also
possible to use an external hardware random bit generator connected to the computer's parallel printer
port.

Shortcuts

The Schematic Diagram

The Circuit Board

The Mechanical Construction

Using the RBG with software applications

Testing the functionality of the RBG

The Diehard test

Downloads

Troubleshooting

The Schematic Diagram

The noise source is a transistor operated in base-emitter reverse biasing. It needs at least 9 volts to
generate noise, so a voltage doubler is used (constructed around the 555 timer IC) to ensure that the
voltage is sufficient even with low battery power. The white noise signal is amplified in the two following
transistor stages, and finally fed into a shmitt-trigger to get a digital TTL level signal. The second
schmitt-trigger drives the LED which indicates the presence of an output signal. The capacitor at the
output of the second shmitt-trigger causes the LED to flash only if a high frequency random signal is
present at the output. The average frequency of the random signal is about 1 MHz and can be heard
due to the harmonics of the square wave signal in any radio band (MW, SW, and even FM) of a nearby
radio as a loud hissing sound.

http://www.stefanbion.de/evpmaker/index_e.htm
http://www.stefanbion.de/evpmaker/evpmkr_e.htm#V2.4
http://www.stefanbion.de/evpmaker/evpmkr_e.htm#parallelport
http://www.stefanbion.de/evpmaker/evpmkr_e.htm#parallelport

Building a Hardware Random Bit Generator for EVPmaker - www.StefanBion.de

http://www.stefanbion.de/evpmaker/random-bit-generator/index_e.htm[28.05.2009 12:16:12]

The abbreviations and their meanings:

DUS = "Diode Universal Silicon" (e.g. 1N914, 1N4148, etc.)
DUG = "Diode Universal Germanium" (e.g. 1N34A, AA112, etc.)
TUN = "Transistor Universal NPN" (e.g. 2N3904, BC547, etc.)

The voltage regulator IC "7805" can be the 0.1A type "78L05"; I used the 2A type "78S05" only because
I had it in my box. :-)

The Circuit Board

I have built the circuit on a piece of perforated circuit board. Here's the layout:

Top view of the perforated circuit board

The red lines are the soldered connections between the components on the copper side of the board.

The Mechanical Construction

Since the random bit generator is very sensitive due to its high-impedance input and its high gain, and
since it also radiates radio waves, I have built it into an aluminum case:

Building a Hardware Random Bit Generator for EVPmaker - www.StefanBion.de

http://www.stefanbion.de/evpmaker/random-bit-generator/index_e.htm[28.05.2009 12:16:12]

The finished device with removed cover

At the front side of the case (top of the image) you can see the Cinch jack for the signal output, the
power switch, and the LED holder. The black box at the opposite side is the battery holder. The circuit
board is fixed to the case bottom using spacer sleeves and M3 screws.

The connected device in action

To connect the random bit generator to the computer's parallel printer port, I have made a cable with a
Cinch plug at one end, and a male 25-pin Sub-D plug at the other end.

Building a Hardware Random Bit Generator for EVPmaker - www.StefanBion.de

http://www.stefanbion.de/evpmaker/random-bit-generator/index_e.htm[28.05.2009 12:16:12]

The shielding of the cable is soldered to pin 25 (Ground) of the Sub-D plug, the inner conductor to pin
13 ("Select" input):

Using the RBG with software applications

To request random bits from the generator, the Select line of the printer port is queried. To find out the
2-byte port adresses of the installed parallel ports LPT 1 to 3, the memory addresses 0x408, 0x40A,
and 0x40C can be read. Usually, the first LPT port, LPT1, is at port address 0x378. Each LPT port has 3
registers of 8 bits each: The data register at the base address, the status register at base address + 1,
and the control register at base address + 2. The status register has 5 input lines that can be used to
connect the RBG: "Acknowledge" at pin 10 of the 25-pin connector (bit 6 of the status register), "Busy"
at pin 11 (bit 7), "Paper Out" at pin 12 (bit 5), "Select" at pin 13 (bit 4), and "Error" at pin 15 (bit 3).

Here's some sample C++ code that shows how to read the status register of LPT1 and query the Select
line for a single random bit:

 int nBaseAddressLPT1 = ReadMemShort(0x408);
 int nStatusRegister = Inp32((short)(nBaseAddressLPT1 + 1));
 int nRandomBit = (nStatusRegister >> 4) & 1;

To get a 32-bit random number, the port has to be queried 32 times, while each retrieved bit is shifted
into a 32-bit integer variable:

 unsigned int nRandomNumber = 0;
 for(int nBit = 0; nBit < 32; nBit++)
 {
 int nStatusRegister = Inp32((short)(nBaseAddressLPT1 + 1));
 int nRandomBit = (nStatusRegister >> 4) & 1;
 nRandomNumber <<= 1;
 nRandomNumber |= nRandomBit;
 // (Wait)
 }

At the location denoted with "(Wait)", the program should wait for a short time to give the RBG time to
output a new random bit which is not correlated to the previous one. The amount of time depends on
the sample rate. For 100 kHz, the time should be 10 µs. Since the Sleep() function has a resolution of
maximum 1 ms, use QueryPerformanceFrequency() and QueryPerformanceCounter() instead. Please
refer to your developer manual for more information on that.

While reading memory addresses and ports was an easy task in the good old MS-DOS days, a device
driver has to be used under Windows. Unfortunately, there's no such device driver by default that
applications can use to read memory or port addresses, so some nice people have written such a device
driver, for instance www.logix4u.net. Their hwinterface32.dll DLL enables programs to access (read
and write) any memory location or I/O port of the computer.

http://logix4u.net/

Building a Hardware Random Bit Generator for EVPmaker - www.StefanBion.de

http://www.stefanbion.de/evpmaker/random-bit-generator/index_e.htm[28.05.2009 12:16:12]

You'll find a working example (including the source code for Borland C++ Builder 4.0) in the "Random
Bit Generator Test" program described below.

Testing the functionality of the RBG

For a rough test of the random bit generator, I have written two simple programs which are available for
download (see below). The first one, called "Random Bit Generator Test", shows the values of the
three registers of the parallel printer port in real-time, and it lets you generate a file with random bits.
This file is always called "random.pcm" and can be analyzed by any other program.

You can specify the number of 32-bit random numbers to be generated, the sample rate, and the
unbiasing method. After the file is written, a message box displays some statistical data:

The second program, "RandomBitmap", displays the bits of a file as pixels. By default, each "1" bit is
shown as a black pixel, and each "0" bit as a white pixel:

Building a Hardware Random Bit Generator for EVPmaker - www.StefanBion.de

http://www.stefanbion.de/evpmaker/random-bit-generator/index_e.htm[28.05.2009 12:16:12]

This way you can see if there are any patterns in the signal which may be the case for some pseudo
random generators but should not be the case for true random numbers.

By default, 512 x 512 pixels (= the first 262,144 bits from the file) are displayed, but you can maximize
the window to display more pixels/bits.

If you alter the setting "Bits per Pixel" to 8, eight bits from the file are used to determine the brightness

of one pixel, so a pixel can have 256 (28) different brightness values.

The "Average bit value" in the status line at the bottom of the above screen displays the ratio of the "1"
bits to the total number of bits in the file. Ideally, this should be exactly 0.5, but as you can see, there's
a slight bias in the outputted bits: The average bit value is about 0.484, or in other words, only 48.4%
of the bits are "1", 51.6% are "0". For EVPmaker, this shouldn't make a notable difference, but
nevertheless you have the option to use one of two unbiasing methods: The XOR correction method, and
the Von Neumann method. The XOR method reads 2 bits and outputs a 1 if both are different and a 0 if
they are equal. The Von Neumann method also reads 2 bits but outputs the first one if both are
different and throws them away if they are equal. Example:

Raw output 10 11 00 10 10 01 00 01 10 10 01 01 11 00 10 00 10 10 01 01 11

XOR correction 1 0 0 1 1 1 0 1 1 1 1 1 0 0 1 0 1 1 1 1 0

Von Neumann 1 1 1 0 0 1 1 0 0 1 1 1 0 0

For a more detailed explanation, see for example here.

http://www.robertnz.net/hwrng.htm

Building a Hardware Random Bit Generator for EVPmaker - www.StefanBion.de

http://www.stefanbion.de/evpmaker/random-bit-generator/index_e.htm[28.05.2009 12:16:12]

In the following table you can see and compare the results of these unbiasing methods. For each test, a
10 MB file was created, giving a total of 83,886,080 random bits, or 2,621,440 random numbers of 32-
bit each. The sample rate used was 100,000 Hz.

Unbiasing method Execution time Bit rate Average bit value Deviation from 0.5

None (raw output) 17.5 min 80 kBit/s 0.484252 -3.150%

XOR correction 35 min 40 kBit/s 0.499724 -0.055%

Von Neumann 70 min 20 kBit/s 0.500100 +0.012%

As you can see, the XOR correction method needs twice as much time compared to the uncorrected raw
output, but has less deviation from the ideal average bit value of 0.5, and the Von Neumann method
needs four times as much time, but has an even less deviation.

Another property of a sequence of good random numbers is that it can't be compressed further. I tested
this with WinZip, and as can be seen, it wasn't able to reduce the file size of the random bit files
generated from the device, even with the compression set to 'Maximum':

The Diehard test

For a more thorough test, I ran the three above 10 MB files through the "Diehard" test which is
considered as a de facto standard for testing randomness. Since the original Diehard report looks kind of
confusing, I wrote a little command line tool, called "DiehardCSV" (which can be downloaded as well),
which extracts the "p-values" from the report and writes them into two CSV files: One file with all p-
values (including the "KS test" values), and one summary file with the number of all p-values distributed
over a 10% raster. The CSV files can be imported into Excel for further analysis. Here are the results for
the three files:

p-value
Range

Number of
p-values

Observed
Percent

Expected
Percent

= 0.0 0 0 0
> 0.0 ... < 0.1 6 3 10
= 0.1 ... < 0.2 8 4 10
= 0.2 ... < 0.3 9 4 10
= 0.3 ... < 0.4 6 3 10
= 0.4 ... < 0.5 7 3 10
= 0.5 ... < 0.6 11 5 10
= 0.6 ... < 0.7 4 2 10
= 0.7 ... < 0.8 3 1 10
= 0.8 ... < 0.9 7 3 10
= 0.9 ... < 1.0 19 9 10

= 1.0 140 64 0

Raw output

Original report

http://en.wikipedia.org/wiki/Diehard_tests
http://www.stefanbion.de/evpmaker/random-bit-generator/rbg_raw.txt

Building a Hardware Random Bit Generator for EVPmaker - www.StefanBion.de

http://www.stefanbion.de/evpmaker/random-bit-generator/index_e.htm[28.05.2009 12:16:12]

p-value
Range

Number of
p-values

Observed
Percent

Expected
Percent

= 0.0 0 0 0
> 0.0 ... < 0.1 20 9 10
= 0.1 ... < 0.2 19 9 10
= 0.2 ... < 0.3 24 11 10
= 0.3 ... < 0.4 24 11 10
= 0.4 ... < 0.5 22 10 10
= 0.5 ... < 0.6 26 12 10
= 0.6 ... < 0.7 21 10 10
= 0.7 ... < 0.8 24 11 10
= 0.8 ... < 0.9 17 8 10
= 0.9 ... < 1.0 23 10 10

= 1.0 0 0 0

XOR correction

Original report

p-value
Range

Number of
p-values

Observed
Percent

Expected
Percent

= 0.0 0 0 0
> 0.0 ... < 0.1 23 10 10
= 0.1 ... < 0.2 23 10 10
= 0.2 ... < 0.3 20 9 10
= 0.3 ... < 0.4 24 11 10
= 0.4 ... < 0.5 24 11 10
= 0.5 ... < 0.6 15 7 10
= 0.6 ... < 0.7 23 10 10
= 0.7 ... < 0.8 20 9 10
= 0.8 ... < 0.9 22 10 10
= 0.9 ... < 1.0 26 12 10

= 1.0 0 0 0

Von Neumann

Original report

All p-values should occur evenly between (excluding) 0.0 and 1.0. While the corrected random numbers
look pretty good, the raw output of the RBG didn't pass the Diehard test: 140 of the 220 p-values
(64%) are 1.0 which indicates that there's something wrong. I'm no expert in mathematics, but I guess
the reason for this is the relatively high bias of the output, i.e. the average bit value of 0.484. However,
I think this is only relevant for certain applications like cryptography, scientific tests, or lottery. For
EVPmaker, it should make no difference, so here also the direct raw output may be used.

Downloads

The above mentioned testing programs written by me can be downloaded here:

Download RBGTest - displays the LPT port lines and writes random number files
Download RandomBitmap - displays binary file contents as a bitmap
Download DiehardCSV - converts Diehard reports into CSV files (all p-values & summary)

There's no installation program; just unzip the files into any folder and start the .exe files. The source
code for Borland C++ Builder 4.0 is included, so you can adapt it and use it in your own programs.

The original "Diehard Battery of Tests of Randomness" can be downloaded from the website of the
Department of Statistics at Florida State University:

Diehard Battery of Tests of Randomness

http://www.stefanbion.de/evpmaker/random-bit-generator/rbg_xor.txt
http://www.stefanbion.de/evpmaker/random-bit-generator/rbg_neumann.txt
http://www.stefanbion.de/evpmaker/random-bit-generator/RBGTest.zip
http://www.stefanbion.de/evpmaker/random-bit-generator/RandomBitmap.zip
http://www.stefanbion.de/evpmaker/random-bit-generator/DiehardCSV.zip
http://www.stat.fsu.edu/pub/diehard/

Building a Hardware Random Bit Generator for EVPmaker - www.StefanBion.de

http://www.stefanbion.de/evpmaker/random-bit-generator/index_e.htm[28.05.2009 12:16:12]

Troubleshooting

EVPmaker as well as the RBGTest program uses the hwinterface32.dll from www.logix4u.net to access
the computer's I/O ports and memory addresses, which is usually not possible under Windows because
of its security mechanisms. This should work under all Windows versions except for 64-bit versions. On
the first program start, a driver (hwinterface32.sys) is automatically copied to the Windows
system32\drivers directory. This requires administrator rights, so if you're usually working as a standard
(limited) user, you need to run the application as administrator once which should install the driver.

Homepage > Software > EVPmaker > Random Bit Generator

http://logix4u.net/
http://www.stefanbion.de/index.htm
http://www.stefanbion.de/software_e.htm
http://www.stefanbion.de/evpmaker/index_e.htm

	www.stefanbion.de
	Building a Hardware Random Bit Generator for EVPmaker - www.StefanBion.de

