

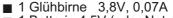
Transistor-Grundschaltungen Elektronische Schaltungen mit NE555

Transistorgrundschaltungen

Elektronische Schaltungen mit dem NE555

Schaltentwicklung

Anhang

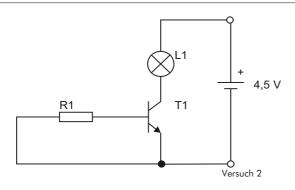

Tamer Berber Februar 1996

Transistor als Schalter

Für den Versuch brauchst Du folgende Bauteile:

- 1 Widerstand 1k

1 Glühbirne 3,8V, 0,07A 1 Batterie 4,5V (oder Netzteil)



Baue folgende Versuchsschaltungen auf:

■ 1 NPN-Transistor BC 547

Beobachtung:

Beobachtung:

	•		Beobachtung:
	\bigotimes	+ 4,5 V	
R1	T1		
		Versuch 3	

Era	ebn	is:

Der Transistor verhält sich wie ein Schalter.

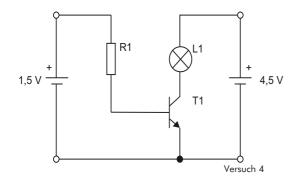
Er wird leitend, wenn..... Er sperrt, wenn

Transistor als Verstärker

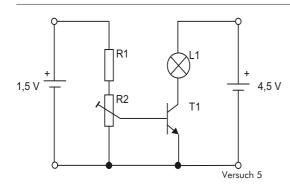
Du brauchst folgende Bauteile:

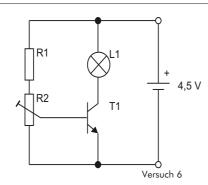
■ 1 NPN-Transistor BC 547

■ 1 Glühbirne 3,8V, 0,07A


■ 1 Widerstand 1k

■ 1 Trimmer 2,5k■ 1 Batterie 4,5V


■ 1 Batterie 1,5V

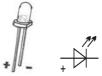

Baue folgende Versuchsschaltungen auf:

Beobachtun	ng:	

Beobachtung::	

Beobachtung:	

Zusammenfassung:


Mit dem Basisstrom kann man den Widerstand der Kollektor-Emitter-Strecke steuern. Je nach Trimmereinstellung leuchtet die Glühbirne stärker oder schwächer.

Der NPN-Transistor verhält sich dabei wie ein Verstär-

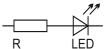
Im **Schalter-Betrieb** kennt der Transistor nur zwei Zustände: **sperrend** und **leitend**.

Im **Verstäker-Betrieb** nützt der Transistor den Bereich zwischen diesen Zuständen.

Leuchtdioden in Schaltungen

Zur optischen Anzeige werden in der Elektronik meistens Leuchdioden verwendet.

Wie bei Dioden muß auch bei Leuchdioden (LED)auf die Polung geachtet werden.


LED's sind empfindliche elektronische Bauteile. Sie dürfen nicht an beliebig hohe Spannungen angelegt werden.

Bei herkömmlichen LED's beträgt die zulässige Spannung ca. 2V. Hierbei fließt ein Strom von etwa 20mA.

Ist die Spannung größer als zulässig, wird die LED durch den zu großen Strom zerstört.

Deshalb darf die LED **nie ohne Vorwiderstand** eingebaut werden.

Der Vorwiderstand hat die Aufgabe, den Strom auf die zulässige Stromstärke zu begrenzen.

Berechnung des Vorwiderstandes

Der Vorwiderstand einer LED wird mit folgender Formel berechnet.

R
$$\frac{U-2V}{0.02A}$$

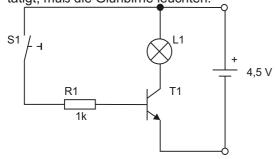
R = Wert des Vorwiderstandes

U = Spannung

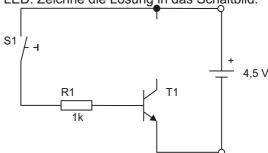
0,02A = 20mA = max. zulässiger Strom2V = Schwellenspannung der LED

(in der Schule gebräuchliche LED)

Beispiel:


Eine LED soll an 9V angeschlossen werden. Welchen Wert muß der Vorwiderstand haben?

U = 9V
R = ?
R
$$\frac{U-2V}{0.02A} = \frac{9V-2V}{0.02A} = 350$$

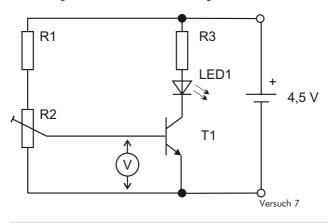

Der nächsthöhere Wert aus der Widerstands-reihe ist 390 .

			Wi	der	sta	nds	reih	e E	12			
	10	12	15	18	22	27	33	39	47	56	68	82
	100	120	150	180	220	270	330	390	470	560	680	820
	1	1,2	1,5	1,8	2,2	2,7	3,3	3,9	4,7	5,6	6,8	8,2
k	10	12	15	18	22	27	33	39	47	56	68	82

Baue folgende Schaltung auf. Wird der Taster betätigt, muß die Glühbirne leuchten.

Ersetze in der Schaltung die Glühbirne durch eine LED. Zeichne die Lösung in das Schaltbild.

Berechne den Vorwiderstand.


Messungen am Transistor

1. Basis-Spannung

Für diesen Versuch brauchst Du ein Vielfachmeßgerät. Stelle das Meßgerät auf **Gleichspannung**smessung ein.

Baue folgende Versuchsschaltung auf:

R1=1k R2=2,5k R3=150 T1=BC547

Stelle den Trimmer so ein, ...

... daß die LED ganz hell leuchtet.

... daß die LED etwa mit der halben Helligkeit leuchtet.

... daß die LED erlischt.

Basisspannung	V

Basisspannung	V	

Basisspannung	V
---------------	---

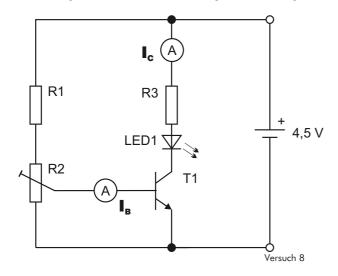
Drehe den Trimmer wieder langsam "hoch" und beobachte dabei das Meßgerät.

Bei welcher Spannung beginnt die LED zu leuchten?

Pasisanannung	V
Basisspannung	V

Zusammenfassung:

Sinkt die Basis-Spannung unterV, so beginnnt der Transistor zu sperren - die LED leuchtet schwächer.


Steigt die Spannung überV, steuert der Transistor ganz durch - die LED leuchtet ganz hell.

2. Basis- und Kollektorströme - Verstärkungsfaktor

Für diesen Versuch brauchst Du zwei Vielfachmeßgeräte.

Stelle die Meßgeräte auf Gleichstrommessung um.

Baue folgende Versuchsschaltung auf und vergleiche den Basisstrom (I_B) mit dem Kollektorstrom (I_C):

R1=1k R2=2,5k R3=150 T1=BC547

Stelle den Trimmer so ein, daß die LED ganz hell leuchtet.

I _B	I _C	Verstärkungsfaktor B
		$\frac{l_{\rm C}}{l_{\rm B}} =$

Stelle den Trimmer so ein, daß die LED etwa mit der halben Helligkeit leuchtet.

I_{B}	I _C	Verstärkungsfaktor B
		=

Drehe den Trimmer soweit nach "unten", daß die LED noch ganz schwach leuchet.

I _B	I _C	Verstärkungsfaktor B
		=

Stelle den Trimmer so ein, daß die LED erlischt.

lв	IC	Verstärkungsfaktor B
		=

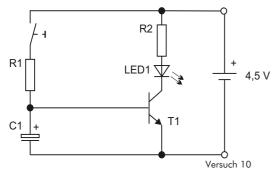
Zusammenfassung:

Aus dem Verhältnis Kollektorstrom ergibt sich der Verstärkungsfaktor eines Transistors.

Die Stromverstärkung ist bei verschiedenen Tranistortypen unterschiedlich.

Zeitschaltungen

Du brauchst folgende Bauteile:

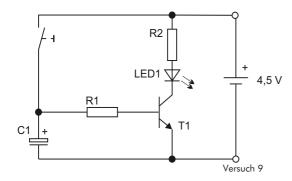

■ 1 LED rot

■ 3 Widerstände 150 , 5,6k , 10k , 47k

- 3 Elektrolytkondensatoren (Elko) 22 F, 100 F, 220 F, 1000 F 1 Batterie 4,5V

Baue folgende Versuchsschaltungen auf:

R2= 150 , C1= 100 R1= 47k


Betätige den Taster.

Beobachtung:	

Baue verschiedene Kondensatoren ein und miß die Zeit.

C1	22 F	100 F	1000 F
Einschalt- verzögerung			

C1	22 F	100 F	1000 F
Ausschalt- verzögerung			

R1= 10k , R2= 150 , C1= 100 F

Betätige den Taster.

Beobachtung:	

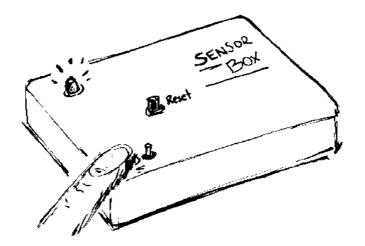
Baue verschiedene Kondensatoren ein und miß die Zeit.

C1	22 F	100 F	220 F
Leuchtzeit			

Setze für C1 wieder 100 F ein und teste jetzt die unterschiedlichen Widerstände.

R1	5,6k	10k	47k
Leuchtzeit			

Zusammenfassung:

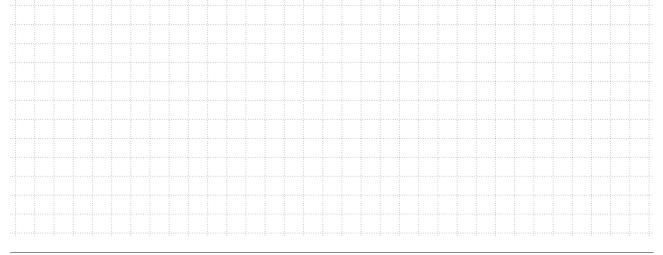

Kondensatoren werden in der Technik häufig zusammen mit Widerständen als Zeitglieder eingesetzt.

Je größer der Kondensatorwert, desto die Verzögerungszeit. Je größer der Widerstandswert, desto die Verzögerungszeit.

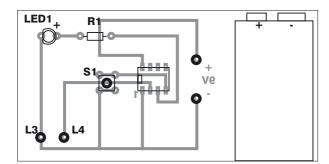
Diese Glieder nennt man RC-Glieder.

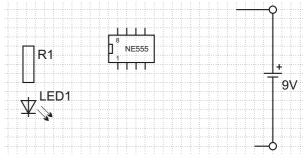
Tamer Berber, 04.02.2001

Merke:



Aus welchen Funktionseinheiten besteht die Sensorbox?




Blockschaltbild

Wie hängen die Funktionseinheiten zusammen?

Zeichne anhand des Layouts das Schaltbild der Sensorschaltung.

Baue die Schaltung auf Deiner Experimentierplatine auf und teste sie.

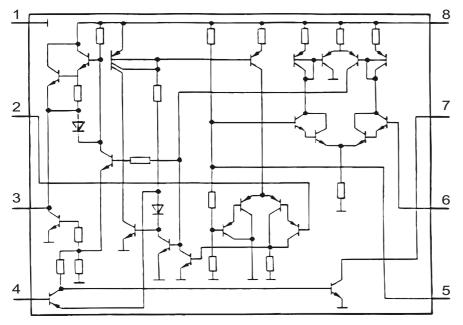
Tamer Berber, 04.02.2001 **2-**

Integrierte Schaltkreise (ICs)

Integrierte Schaltkreise (ICs) sind Bauteile, auf denen sich bereits vorgefertigte Schaltungen auf kleinstem Raum befinden.

In der Elektronik-Industrie gibt es heutzutage unzählige IC-Typen, die in allen Bereichen eingesetzt

Nenne Dir bekannte IC-Einsatzgebiete.


Der Timer-IC NE 555

Der NE 555 ist ein IC, der universell für verschiedene Schaltungsaufgaben verwendet wer-

den kann, z.B. als Tongeber, Schalt Flip-Flop (Befehlsspeicher).

Innenbeschaltung des NE 555

Welche Bauteile beinhaltet die Innenbeschaltung des NE 555?

Zähle sie.

Anschlußbelegung des NE 555

- 1 Masse (-U_{batt})
 - Anschluß an den Minuspol der Spannungsversorgung
- 2 Trigger-Eingang

Auslöser, Eingang, Einschalten des Gerätes

3 Ausgang

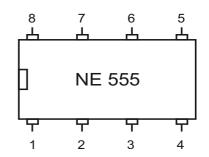
Signalausgang, Anschluß LEDs usw.

4 Reset

Zurücksetzen in den alten Zustand

5 Steuerspannung

Hilfseingang zur Stabilisierung einer Schaltung


6 Schaltschwelle

Signaleingang, Anschluß von zeit bestimmten Bauteilen (RC-Glieder)

7 Entladung

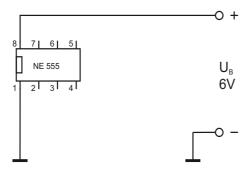
Signalausgang, Anschluß von zeitbestimmten Bauteilen

8 Spannung (+U_{batt}) Anschluß an Pluspol

Wichtige Daten:

Betriebsspannung: 4,5 bis 15V Laststrom am Ausgang: max. 200mA

Steuerspannung: 2/3 der Betriebsspannung

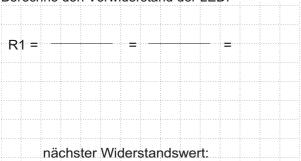

NE 555 - Grundfunktionen

Der NE 555 ist ein universell einsetzbarer Schaltkreis. Je nach Außenbeschaltung kann der NE 555 für verschiedene Schaltungsaufgaben eingesetzt werden:

- Flip-Flop (Befehlsspeicher)
- Timer, Żeitbaustein
- Taktgeber, Blinkschaltung
- Schaltverstärker

Betriebsspannung anschließen

Bei allen Schaltungen muß die Betriebsspannung (U_B)an den NE 555 angeschlossen sein.



Die Betriebsspannung muß zwischen 4,5 und 15V liegen.

Baue die Schaltung mir Deiner Experimentierplatine auf. Verwende als Spannungsversorgung ein Netzteil.

NE 555 als Flip-Flop

Schalte an den Ausgang des NE 555 eine LED. Berechne den Vorwiderstand der LED.

Verbinde kurz mit einem Kabel...

... den Trigger-Eingang (...) mit Masse (...).

... den Reset-Anschluß (...) mit Masse.

Beobachtung:

Beobachtung:

Verbinde kurz mit den Fingern...

... den Trigger-Eingang (...) mit Masse.

... den Reset-Anschluß (...) mit Masse.

Beobachtung:

Dark all a

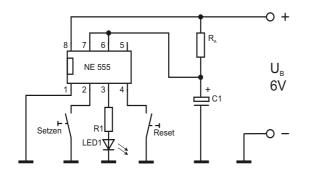
Beobachtung:....

Verbinde kurz mit einem Kabel

... den Trigger-Eingang (...) mit Masse.

Beobachtung:

... die Schaltschwelle (...) mit Plus (...).


Beobachtung:

	O +
8 7 6 5 NE 555	U _B 6V
R1 LED1	

Tamer Berber, 04.02.2001 2-

2. NE 555 als Zeitbaustein

Baue folgende Schaltung auf: R_A=47k C1=100 F

Beobachtung:

"Setzen" drücken:.....

"Setzen" loslassen:

"Reset" drücken während LED leuchtet:.....

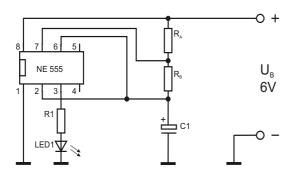
Wähle für R_A und C1 folgende Werte:

C1	R_{A}	LED-Leuchtzeit
47 F		
100 F	47k	
470 F		

C1	R_{A}	LED-Leuchtzeit
	10k	
100 F	56k	
	100k	

Merke:

Je g	rößer	der \	Wider	stand,	desto	 	 	


Merke:

Je	größer d	ler Kon	densato	r, desto	

Für welche Anwendungen ist der Zeitbaustein denkbar?	
•	

3. NE 555 als Blinkschalter

Baue folgende Schaltung auf: R_A , R_B =4,7k C1=100 F

Beobachtung:	

Wähle für R_A, R_B und C1 folgende Werte:

C1	R _A , R _B	LED-Bl Leucht- zeit	inkzeit Pausen- zeit	Frequenz EIN-AUS pro sec.			
	10k						
100 F	56k						
	100k						

C1	R _A , R _B	LED-Bl Leucht- zeit	linkzeit Pausen- zeit	Frequenz EIN-AUS pro sec.
47 F				
100 F	47k			
220 F				

Die Blinkfrequenz wird bestimmt durch die RA, RB und den C1. Sie bilden das RC-Glied.

Merke:

Verwendet man einen Kondensator mit größerer

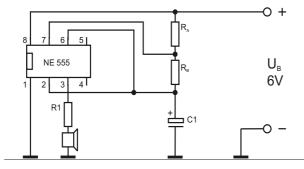
Merke:

Pooboohtung:

Bei kleineren Widerstandwerten wird die

Kapazität, wird die Frequenz

Frequenz


Für welche Anwendungen ist der Blinkschalter denkbar?

.....

Setze für R_A/R_B je 47k ein. Verwende verschiedne Werte für C1.

Verändere die Schaltung:

Baue in den Ausgang statt der LED einen Lautsprecher mit Vorwiderstand (R1 = 47).

Welche Anwendungen sind denkbar?

Tamer Berber, 04.02.2001 2-3

Schaltentwicklung

Entwicklung eines Bedenkzeitschalter

Es soll ein elektronischer Zeitschalter entwickelt werden:

- Als Grundbaustein soll das IC NE555 verwendet werden.
- Mit einem Trimmer kann stufenlos eine Verweilzeit zwischen 1 und 60Sekunden eingestellt werden.
- Eine grüne LED leuchtet nach dem Betätigen eines Tasters. Nach Ablauf der eingestellten Verweilzeit geht die LED aus.
- Eine zweite LED (gelb) zeigt an, ob das Gerät eingeschaltet ist.
- Mit einem weiteren Taster kann vor Ablauf der Zeit die Schaltung zurückgesetzt werden.
- Als Spannungsversorgung ist eine 9V-Blockbatterie eingebaut.

	velc	he C	run	dsc	hal	tun	g h	and	delt	es	sicl	n?												
ien	e Gı	und	funk	tior	ien	NE	55	5.									 	 	 		 		 	
nt	wic	:ke	ln	de	s E	šlo	ck	SC	ha	ltk	il	de	S											
		-unk das		cks	chal	Itbil	d																	
				<u>.</u>									ļ		<u>.</u>						 			
				ļ															 		 			
														ļ					 		 	; ; ;		
				i										ļ					 		 			
																			 		 }			
														1					 		 			
																,			 	(<u>-</u>	 ·			

Entwickeln des Schaltbildes

Bedenkzeitschalter mit NE555

Schaltentwicklung

Stückliste

Menge	Bezeichnung	Maße	Bemerkung

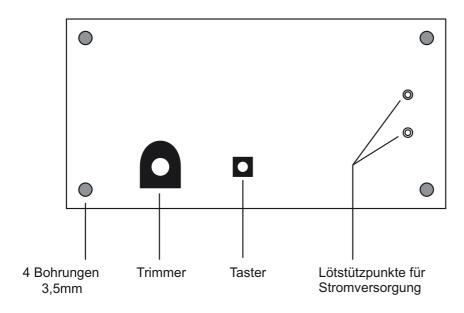
Tamer Berber, 04.02.2001 3-3

Schaltentwicklung

Trage alle Bauteile ind die Stückliste:

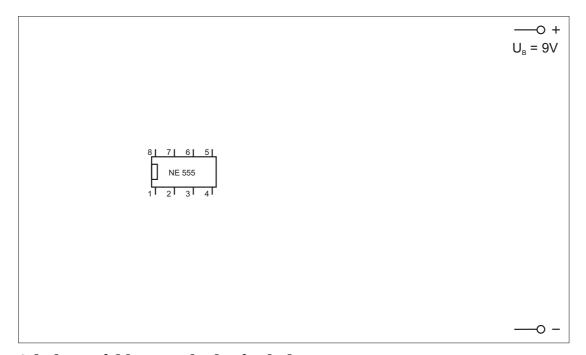
Herstellen des Bedenkzeitschalters

Entwerfe für den Bedenkzeitschalter ein Platinen-Layout. Beachte folgende Vorgaben:


- Alle Bauteile sind durch Löten auf der Platine zu befestigen.
- Die Position der Bauteile ist durch die Skizze (unten) vorzusehen.
- Der Anschluß der Versorgungsspannung erfolgt mittels Lötstützpunkten.
- Für die Befestigung der Platine auf der Acrylglas-Grundplatte sind entsprechende Bohrungen vorzusehen.

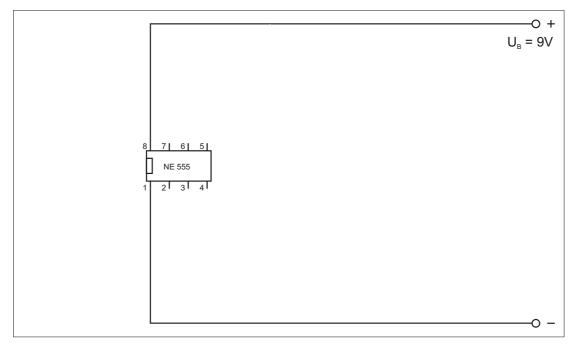
Wichtiger Hinweis:

Verwende für den Trimmer und die Lötaugen große Lötaugen.

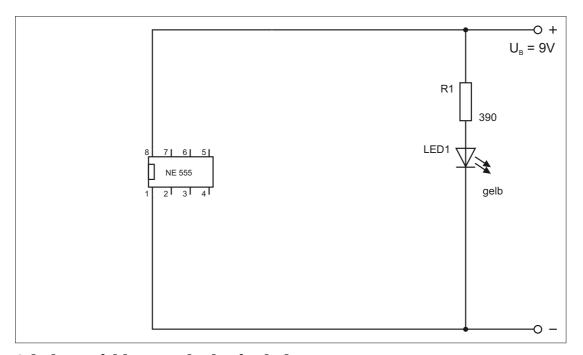

Ordne die LEDs sinnvoll an.

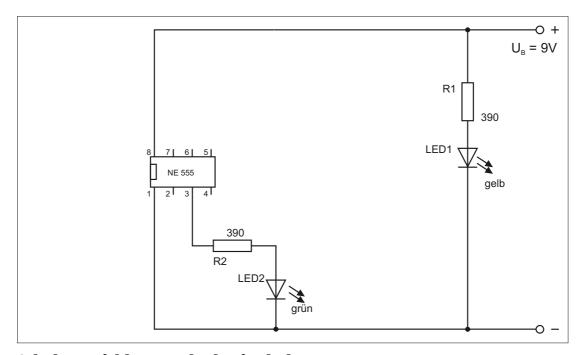
Skizze

Tamer Berber, 04.02.2001 3-4

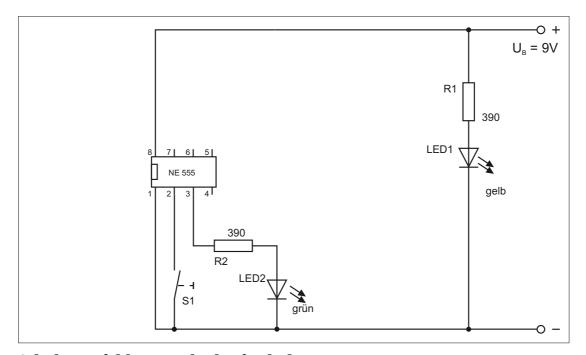

Schließe die Spannungsversorgung an das IC an.

Schaltentwicklung Bedenkzeitschalter


Schließe die gelbe LED an, die anzeigt, ob die Spannungsversorgung anliegt. Berechne den Vorwiderstand:

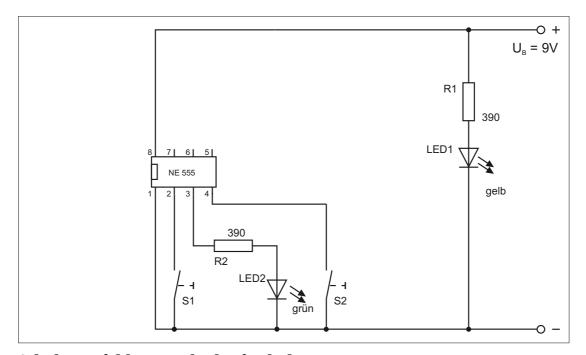

Schaltentwicklung Bedenkzeitschalter

Schließe die grüne LED an den Ausgang.

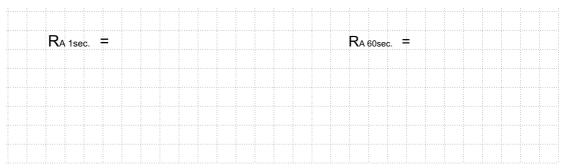

Schaltentwicklung Bedenkzeitschalter

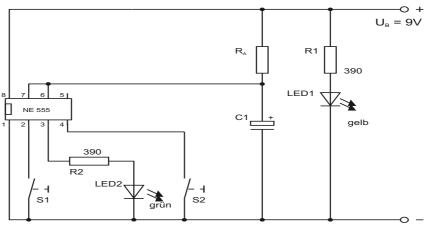
Schließe den Taster zum "Setzen" an den Signaleingang.

Schaltentwicklung Bedenkzeitschalter


Schließe den Taster zum "Rücksetzen" (Reset) an.

Schaltentwicklung Bedenkzeitschalter

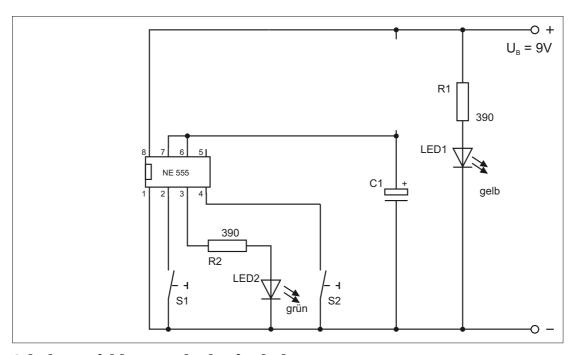

Schließe das Zeitglied (Widerstand R_{A} und Kondensator) an. Verwende für den Kondensator einen Elko.



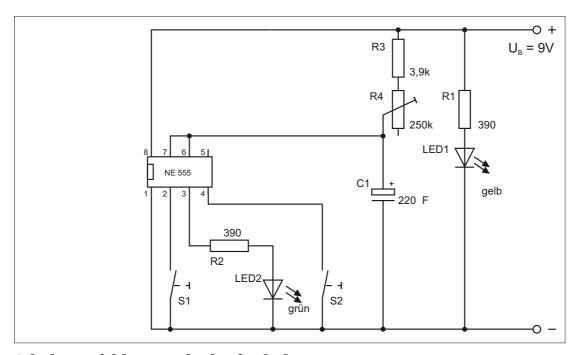
Schaltentwicklung Bedenkzeitschalter

Berechne die Widerstandswerte für R_A bei kürzester und längster Verweilzeit nach folgender Formel: t_V = 1,1 R_A C t_V bei kürzester Verweilzeit: 1s t_V bei längster Verweilzeit: 60s

Verwende für C einen Elko 220 F


Schaltentwicklung Bedenkzeitschalter

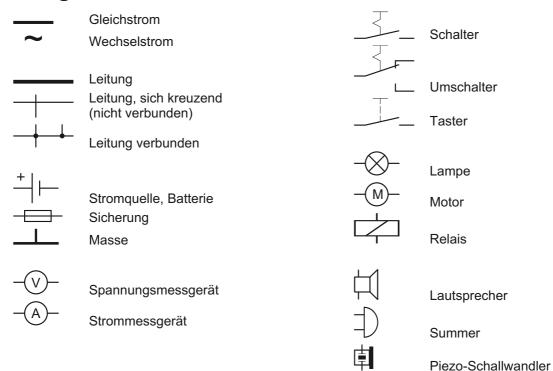
$$R_{A \, 1sec.} = \frac{t_{V}}{1,1 \quad C} \qquad R_{A \, 60sec.} = \frac{t_{V}}{1,1 \quad C}$$

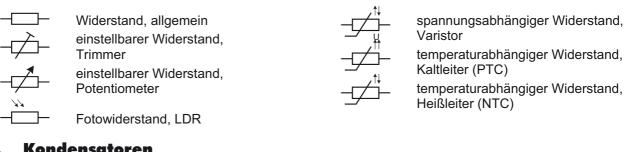

$$\frac{1sec}{1,1 \quad 220 \ F} \qquad \frac{60sec}{1,1 \quad 220 \ F}$$

$$4123 \qquad \qquad 247 \, 933$$

Schaltentwicklung Bedenkzeitschalter

Schaltentwicklung Bedenkzeitschalter





Die wichtigsten Schaltzeichen

Allgemein - Elektrotechnik

Widerstände

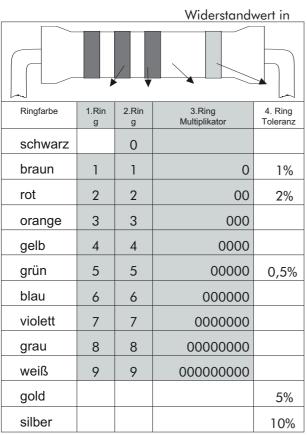
Kondensatoren

- -	Kondensator	#	einstellbarer Kondensator,
- <u>-</u> -	Elektrolytkondensator		Drehkondensator

Dioden

\rightarrow	Diode, Gleichrichter	\sim	
\rightarrow	Zener-Diode		Leuchtdiode, LED

Transistoren


Maßeinheiten und Größen

Symbole für Größen und Maßeinheiten

Größe	Symbol	Maßeinheit	gebräuchliche Angaben		Bauelement
Spannung	U	V Volt	1 kV = 1 000 V 1 mV = 0,001 V	Kilovolt Millivolt	
Strom	I	A Ampere	1 mA = 0,001 A	Milliampere	
Widerstand	R	Ohm	1 M = 1 000 000 1 k = 1 000	Megohm Kiloohm	Widerstände
Kapazität	С	F Farad	1 F = 0,000 001 F 1 nF = 0,000 000 001 F 1 pF = 0,000 000 000 001 F	Mikrofarad Nanofarad Pikofarad	Kondensatoren
Frequenz	f	Hz Hertz	1 MHz = 1 000 000 Hz 1 kHz = 1 000 Hz	Megahertz Kilohertz	
Leistung	Р	W Watt	1 MW = 1 000 000 W 1 kW = 1 000 W	Megawatt Kilowatt	

Widerstände

Der Widerstandscode

Die Widerstandsreihe E12

Widerstandswerte in					
12	120	1,2k	12k	120k	
15	150	1,5k	15k	150k	
18	180	1,8k	18k	180k	
22	220	2,2k	22k	220k	
27	270	2,7k	27k	270k	
33	330	3,3k	33k	330k	
39	390	3,9k	39k	390k	
47	470	4,7k	47k	470k	
56	560	5,6k	56k	560k	
68	680	6,8k	68k	680k	
82	820	8,2k	82k	820k	
100	1k	10k	100k	1M	

Platinenherstellung

Belichten

■ Folie mit der **Klebeseite nach oben** auf den Tageslichtprojektor legen.
Die Beschriftung ist spiegelverkehrt sichtbar.

- Platine mit Photoseite nach unten auf Folie legen.
- ca. 5min belichten

Entwickeln & Ätzen

Platine bohren

- Platine in Entwicklerbad einlegen und schwenken bis die Leiterbahnen gut sichtbar sind.
- gut abtropfen lassen und vorsichtig mit Wasser abspülen. (ca. 1min).
 - Achtung: Handschuhe tragen.

Je nach Bauteil sind unterschiedliche Bohrdurch-messer zu verwenden. Nach dem Bohren die Leiterbahnen gründlich mit Spiritus reinigen.

Platine	in Ätzbad	einlege	n - ca. 8-	-10min a	ätzen.
Plating	alle dam	i hed st Ä	nahman	ahtrock	non

Platine aus dem Ätzbad nehmen, abtrocknen und mit Wasser abspülen.

0,8	3mm	0,9mm	1,3mm	1,5mm
IC	s	Widerstände, Kondensatoren, Dioden, LEDs	Lötnägel, Trimmer, Klemmreihen, Print-Relais	

Bestücken und Löten

Mechanische Arbeiten (Sägen, Feilen, Einschlagen von Lötnägeln) vor dem Bestücken durchführen.

- nicht auf Leiterbahnseite bestücken.
- mit niedrigen Bauteilen (z.B. Widerstände) beginnen.
- 1. Bestücken
- 2. Bauteile mit aufgelegtem Brett halten und Platine wenden.
- 3. Löten
- Nächste Bauteilsorte mit gleicher Höhe bestücken.
- 5. Wenden und löten.

... Erst wenn alle Bauteile bestückt sind, werden die Pins mit dem Seitenschneider abgezwickt.